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Square-lattice site percolation at increasing ranges of neighbor bonds
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We report site percolation thresholds for square lattice with neighbor bonds at various increasing ranges.
Using Monte Carlo techniques we found that nearest neightddky, next-nearest neighbok&INN), next-
next-nearest neighbofgN), and fifth-nearest neighbo(8N) yield the samep.=0.592.... The fourth-nearest
neighbors(5N) give p.=0.298.... This equality is proved to be mathematically exact using symmetry argu-
ment. We then consider combinations of various kinds of neighborhoods(Mith+ NNN), (NN+4N), (NN
+NNN+4N), and (NN+5N). The calculated associated thresholds are respectiyeip.407..., 0.337.,
0.288.., and 0.234... The existing Galam-Mauger universal formula for percolation thresholds does not
reproduce the data showing dimension and coordination number are not sufficient to build a universal law
which extends to complex lattices.
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I. INTRODUCTION nected as well as all next-next-nearest-neighbor ones but

: . ._next-nearest neighbors are not active.
Calculating percolation thresholds has been an ongoing Comparing our numerical estimates with the predictions

challenge for decad¢s—6]. While very few lattices allow an ¢ /-, Galam-MaugefGM) universal formula for perco-

exact analytical caIcuIatlon,_ large scale simulations haV(?ation threshold$12], we found significant discrepancies. It
been very valuable to determine a large spectrum of them for

< - X . strengthens the earlier claim that only dimension and coordi-
both Bravais[4,7,8 and disordered] lattices. The drastic natiorg1| number could not be sufficie)ll‘nt to build a universal
increase in computer capacities has recently permitted th . :
calculation of thresholds at rather high dimensions upl to faw which extends to complex lattic¢s,13).
=13 for the hypercubg4,10]. In parallel, not much work has
been devoted to regular lattices with neighbor links which Il. CALCULATIONS

are not nearest neighbo&IN, von Neumann's neighbor- There exist several computational techniques which allow
hood. Some scarce results are available for simultaneous P q

nearest and next-nearest neighb¢MNN+NNN, Moore’s us to perform calculations of percolation threshdlt4é—17.
neighborhooi[4.11] ' Here we are using the Hoshen-Kopelman algorittikA )

In this paper we report a systematic calculation of site[17]' Once the lattice is given with the occupied sites, it

percolation thresholds for the square lattice with neighbo@IOWS us to recognize which sites belong to which clusters.

bonds at successive increasing range. We consider the seri #th HKA one can assign to each occupied site a_IabeI and
of nearest neighboré\N), next-nearest neighbor&INN), sites in the same clust_er have the same labels. D_|fferer_1t la-
next-next-nearest neighbofgN), fourth-nearest neighbors bels are assigned to different clusters. The HKA is particu-
(5N), and fifth-nearest neighbot§N). It should be stressed larly efficient when we check if the site at distanCdrom

that for each one of the considered distance of bonds, afpe first Ime—ofteq fully OCCUD'ed_'S still connected to that
others are not active. For instance, in the case of next-neare&t® through the sites at the dlstances_smalle_r thaiThe
neighbors(NNN), the nearest-neighbof&IN) sites are not algorithm requires storing only a single line of sites and goes
connected, only the NNN are. This principle applies to a”through the lattice only once. In such a case HKA becomes

our calculations. We found that the threshold is the same fo?xtremily elﬁ'ﬁ'egt tas I sa_\t/es sztory an(? tlfﬂéﬁgow—
all of them withp.=p.(NN) except at 5N. An explanation in ever, when links between Sites at distances larger riaom
terms of symmetry is provided a top border are desired, the whole lattice must be stored

We then consider combinations of various ranges 0{4’18_2(]' With the HKA on a square lattice when we assign

. - the labels for the investigated sifielack sites in Fig. L we
?Is ;\IQE?\IOSILOSSSN)W 't:(r'1N ’:Ih;gg”\gégs’\l T,VéleN),;g\\,? J;?nl:lal tgrrlgou need to check already labeled and occupied sites in its neigh-
' .soorhood(slashed sites in Fig.)1The possible links to re-

range Off boﬁ%igw thﬁy are necessr?t:ily compact. For Ir‘ﬁwaining sites in the neighborhodbackslashed sites in Fig.
stance, for( ) all nearest-neighbors sites are con- 1) may be checked later, basing on the neighborhood’s point

symmetry.
The percolation threshold valugs are evaluated from
*URL: http://nome.agh.edu.pl/malarz/ the crossing point of three curves showing dependences of
"Electronic address: galam@ccr.jussieu.fr the percolation probabilit on the site occupation probabil-
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FIG. 1. Various site neighborhoods on the square latf@eNN—von Neumann’s neighborhooth) NNN, (c) 4N, (d) 5N, (e) 6N; and
the examples of their combinationg) NN+NNN—Moore’s neighborhood(g) NN+4N, (h) NN+5N, and(i) NN+NNN+4N.

ity p for lattices of linear size& =100, 500, and 1000. The
results are averaged ovif,,=10° and 1@ for L=1000 and TABLE I. The percolation thresholg, for various neighbor-
100, respectively. With enlarging the lattice sizehe curve  hoods on square lattice and sites coordination nunzband the
P(p) becomes steeper and steeper and tends to Heavisidefsoretical valuegS™.

function ®(-p,) whenL — 0, as expected.

Neighborhood z o8 pcM
. RESULTS NN 4 0.592.. 0.5984..
. . NNN 4 0.592.. 0.5984..

We present our results in Table I. The percolation thresh- AN 4 0.592 0.5984
olds p, for the square lattice are computed with HKA for a OO : B
series of neighborhoods. First only one type of neighbor is 5N 8 0.298.. 0.4411..
considered at a time, increasing repeatedly the range with 6N 4 0.592.. 0.5984..
NN, NNN, 4N, 5N, and 6N. It turns out that the threshold NN+NNN 8 0.407.. 04411 .
Bz;ggggls the same for all of them except at 5N where NN+4N 8 0.337.. 0.4411 .
We now demonstrate mathematically that the above NN+SN 12 0.234.. 0.3748..
equality of the percolation thresholds for NN, NNN, 4N, and N+ NNN+4N 12 0.288.. 0.3748..

6N neighborhoods is indeed exact. Using symmetry argu
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also revised the value @.(NN+NNN+4N) which has been
studied in an earlier papg@2] and it was set at 0.292 to
compare to our value of 0.288.

i

IV. DISCUSSION

At this stage it is interesting to check the validity of the
GM universal formula for percolation thresholfs2,23 in
the case of these complex neighborhoods. Comparing our
numerical estimates with its predictions as shown in Table |
we found a good agreement for NN, NNN, 4N, and 6N
=0.006 but not for 5N(A=0.123. It is also fair for (NN
+NNN) with A=0.034 but not for all other combinations.
FIG. 2. The lattices with(@ NNN and (b) 4N neighborhoods The significant discrepancies occur for complex and non-
may be mapped t¢a) two or (b) four parallel NN situations but compact neighborhoods. It strengthens the earlier claim that
with (a) V2 and(b) two times larger lattice constants. only dimension and coordination number could not be suffi-
cient to build a universal law which extends to complex lat-
ments all lattices with neighborhoods shown in Fig&)l tices[13].
1(c), and 1e), can be mapped into a NN situation as in Fig. Indeed above failures could be anticipated due to the fact
1(a). The only difference is a larger and larger lattice con-that several lattices have both identieaandd though they
stant. To implement the mapping, we take a square latticéxhibit different thresholds as seen from Table I. In particular
and build on it the lattice from only NNN bonds. Two inde- 5N, (NN+NNN), (NN+4N) havez=8 andd=2 while all p
pendent interpenetrated squares sublattices appear. Therefare different. The same occurs f¢NN+5N) and (NN
the percolation of NNN is split onto two parallel NN prob- +NNN+4N) with z=12 andd=2.
lems on each one of these two square sublattices. Accord- A similar situation occurs foff¢ in the Ising model where
ingly the p. on each one is thp, of NN. Moreover, as the even with the same number of interacting spins in the neigh-
site must be distributed homogeneously on the initial latticeporhood and the same dimensionality we have diffefient
we will have the same density of occupied sites on each on24]. On the other hand, the Bragg-Williams approximation
of the sublattices making both percolations occur simultaj25] predicts Tz to be a unique function of coordination
neously at the same. [see Fig. 2a)]. Such a scheme can be numberz, i.e., kgTc=2zJ [26]. The GM universal formula
repeated with 4NFig. 2(b)] and 6N but not with 5N. As which also extends td includes a dependence on bath
shown in Fig. 1d) the 5N lattice has eight neighbors while andz [27].
NN, NNN, 4N, and 6N have four. It is worth stressing that To conclude, we have reported numerical estimates for
our demonstration applies to the exact equality of the percosite percolation thresholds for the square lattice with NNN,
lation thresholds but does not hint to an exact calculation t@N, 5N, 6N, (NN+4N), (NN+5N), and (NN+NNN+4N)
the common percolation value since it uses only symmetryieighborhoods. Our estimates may prove useful in the search
arguments. However, these symmetry properties may beer a robust universal formula for percolation thresholds
come instrumental in underlining interesting physical prop-which would apply to complex lattices. In particular on how
erties associated to some exotic materials. In particular, ifo extend the GM law by including some additional topologi-
one is able to discriminate between the two interpenetratedal ingredient besides coordinatiarand dimensiorul.
lattices, it may open a way to reach percolation at a much These results may prove useful to some of the large spec-
lower critical density, down to half the value pf. But such  trum of physical and interdisciplinary topics where the per-
a search is outside the scope of the present work. colation theory may be applied such as forest fires spreading
We also consider several combinations of various rangef20,28, immunology[29], liquid migration in porous media
of neighborhoods. First, an increasing compact neighborf30], econophysic$31], and sociophysicE32].
hood with (NN+NNN) and (NN+NNN+4N). The calcu-
lated threshold numerical estimates are respectively ACKNOWLEDGMENTS
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