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We report site percolation thresholds for square lattice with neighbor bonds at various increasing ranges.
Using Monte Carlo techniques we found that nearest neighborssNNd, next-nearest neighborssNNNd, next-
next-nearest neighborss4Nd, and fifth-nearest neighborss6Nd yield the samepc=0.592. . .. The fourth-nearest
neighborss5Nd give pc=0.298. . .. This equality is proved to be mathematically exact using symmetry argu-
ment. We then consider combinations of various kinds of neighborhoods withsNN+NNNd, sNN+4Nd, sNN
+NNN+4Nd, and sNN+5Nd. The calculated associated thresholds are respectivelypc=0.407. . ., 0.337…,
0.288…, and 0.234…. The existing Galam-Mauger universal formula for percolation thresholds does not
reproduce the data showing dimension and coordination number are not sufficient to build a universal law
which extends to complex lattices.
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I. INTRODUCTION

Calculating percolation thresholds has been an ongoing
challenge for decadesf1–6g. While very few lattices allow an
exact analytical calculation, large scale simulations have
been very valuable to determine a large spectrum of them for
both Bravais’f4,7,8g and disorderedf9g lattices. The drastic
increase in computer capacities has recently permitted the
calculation of thresholds at rather high dimensions up tod
=13 for the hypercubef4,10g. In parallel, not much work has
been devoted to regular lattices with neighbor links which
are not nearest neighborssNN, von Neumann’s neighbor-
hoodd. Some scarce results are available for simultaneous
nearest and next-nearest neighborssNN+NNN, Moore’s
neighborhoodd f4,11g.

In this paper we report a systematic calculation of site
percolation thresholds for the square lattice with neighbor
bonds at successive increasing range. We consider the series
of nearest neighborssNNd, next-nearest neighborssNNNd,
next-next-nearest neighborss4Nd, fourth-nearest neighbors
s5Nd, and fifth-nearest neighborss6Nd. It should be stressed
that for each one of the considered distance of bonds, all
others are not active. For instance, in the case of next-nearest
neighborssNNNd, the nearest-neighborssNNd sites are not
connected, only the NNN are. This principle applies to all
our calculations. We found that the threshold is the same for
all of them withpc=pcsNNd except at 5N. An explanation in
terms of symmetry is provided.

We then consider combinations of various ranges of
neighborhoods withsNN+NNNd, sNN+4Nd, sNN+5Nd, and
sNN+NNN+4Nd. In these cases we have simultaneous
range of bonds but they are necessarily compact. For in-
stance, forsNN+4Nd all nearest-neighbors sites are con-

nected as well as all next-next-nearest-neighbor ones but
next-nearest neighbors are not active.

Comparing our numerical estimates with the predictions
from the Galam-MaugersGMd universal formula for perco-
lation thresholdsf12g, we found significant discrepancies. It
strengthens the earlier claim that only dimension and coordi-
nation number could not be sufficient to build a universal
law which extends to complex latticesf7,13g.

II. CALCULATIONS

There exist several computational techniques which allow
us to perform calculations of percolation thresholdsf14–17g.
Here we are using the Hoshen-Kopelman algorithmsHKA d
f17g. Once the lattice is given with the occupied sites, it
allows us to recognize which sites belong to which clusters.
With HKA one can assign to each occupied site a label and
sites in the same cluster have the same labels. Different la-
bels are assigned to different clusters. The HKA is particu-
larly efficient when we check if the site at distance, from
the first line—often fully occupied—is still connected to that
line through the sites at the distances smaller than,. The
algorithm requires storing only a single line of sites and goes
through the lattice only once. In such a case HKA becomes
extremely efficient as it saves memory and timef4g. How-
ever, when links between sites at distances larger than, from
a top border are desired, the whole lattice must be stored
f4,18–20g. With the HKA on a square lattice when we assign
the labels for the investigated sitesblack sites in Fig. 1d, we
need to check already labeled and occupied sites in its neigh-
borhoodsslashed sites in Fig. 1d. The possible links to re-
maining sites in the neighborhoodsbackslashed sites in Fig.
1d may be checked later, basing on the neighborhood’s point
symmetry.

The percolation threshold valuespc are evaluated from
the crossing point of three curves showing dependences of
the percolation probabilityP on the site occupation probabil-
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ity p for lattices of linear sizesL=100, 500, and 1000. The
results are averaged overNrun=103 and 104 for L=1000 and
100, respectively. With enlarging the lattice sizeL the curve
Pspd becomes steeper and steeper and tends to Heaviside’s
function Qs−pcd whenL→`, as expected.

III. RESULTS

We present our results in Table I. The percolation thresh-
olds pc for the square lattice are computed with HKA for a
series of neighborhoods. First only one type of neighbor is
considered at a time, increasing repeatedly the range with
NN, NNN, 4N, 5N, and 6N. It turns out that the threshold
pc=0.592. . . is the same for all of them except at 5N where
pc=0.298. . ..

We now demonstrate mathematically that the above
equality of the percolation thresholds for NN, NNN, 4N, and
6N neighborhoods is indeed exact. Using symmetry argu-

FIG. 1. Various site neighborhoods on the square lattice:sad NN—von Neumann’s neighborhood,sbd NNN, scd 4N, sdd 5N, sed 6N; and
the examples of their combinations:sfd NN+NNN—Moore’s neighborhood;sgd NN+4N, shd NN+5N, andsid NN+NNN+4N.

TABLE I. The percolation thresholdpc for various neighbor-
hoods on square lattice and sites coordination numberz and the
theoretical valuespc

GM.

Neighborhood z pc pc
GM

NN 4 0.592… 0.5984…
NNN 4 0.592… 0.5984…
4N 4 0.592… 0.5984…
5N 8 0.298… 0.4411…
6N 4 0.592… 0.5984…

NN+NNN 8 0.407… 0.4411…
NN+4N 8 0.337… 0.4411…
NN+5N 12 0.234… 0.3748…

NN+NNN+4N 12 0.288… 0.3748…
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ments all lattices with neighborhoods shown in Figs. 1sbd,
1scd, and 1sed, can be mapped into a NN situation as in Fig.
1sad. The only difference is a larger and larger lattice con-
stant. To implement the mapping, we take a square lattice
and build on it the lattice from only NNN bonds. Two inde-
pendent interpenetrated squares sublattices appear. Therefore
the percolation of NNN is split onto two parallel NN prob-
lems on each one of these two square sublattices. Accord-
ingly the pc on each one is thepc of NN. Moreover, as the
site must be distributed homogeneously on the initial lattice,
we will have the same density of occupied sites on each one
of the sublattices making both percolations occur simulta-
neously at the samepc fsee Fig. 2sadg. Such a scheme can be
repeated with 4NfFig. 2sbdg and 6N but not with 5N. As
shown in Fig. 1sdd the 5N lattice has eight neighbors while
NN, NNN, 4N, and 6N have four. It is worth stressing that
our demonstration applies to the exact equality of the perco-
lation thresholds but does not hint to an exact calculation to
the common percolation value since it uses only symmetry
arguments. However, these symmetry properties may be-
come instrumental in underlining interesting physical prop-
erties associated to some exotic materials. In particular, if
one is able to discriminate between the two interpenetrated
lattices, it may open a way to reach percolation at a much
lower critical density, down to half the value ofpc. But such
a search is outside the scope of the present work.

We also consider several combinations of various ranges
of neighborhoods. First, an increasing compact neighbor-
hood with sNN+NNNd and sNN+NNN+4Nd. The calcu-
lated threshold numerical estimates are respectivelypc
=0.407. . . and 0.288… sTable Id. Then more complex ones
with sNN+4Nd and sNN+5Nd for which we obtainedpc

=0.337. . . and 0.234… sTable Id. The fact thatpc of sNN
+5Nd is smaller thanpc of sNN+NNN+4Nd is consistent
with 5N z=8 instead ofz=4 for all the others.

The obtained percolation threshold valuespcsNNd
=0.592. . . andpcsNN+NNNd=1−pcsNNd=0.407. . . are con-
sistent with the values reported in Refs.f4,11,21g We have

also revised the value ofpcsNN+NNN+4Nd which has been
studied in an earlier paperf22g and it was set at 0.292 to
compare to our value of 0.288….

IV. DISCUSSION

At this stage it is interesting to check the validity of the
GM universal formula for percolation thresholdsf12,23g in
the case of these complex neighborhoods. Comparing our
numerical estimates with its predictions as shown in Table I
we found a good agreement for NN, NNN, 4N, and 6NsD
=0.006d but not for 5N sD=0.123d. It is also fair for sNN
+NNNd with D=0.034 but not for all other combinations.
The significant discrepancies occur for complex and non-
compact neighborhoods. It strengthens the earlier claim that
only dimension and coordination number could not be suffi-
cient to build a universal law which extends to complex lat-
tices f13g.

Indeed above failures could be anticipated due to the fact
that several lattices have both identicalz andd though they
exhibit different thresholds as seen from Table I. In particular
5N, sNN+NNNd, sNN+4Nd havez=8 andd=2 while all pc

are different. The same occurs forsNN+5Nd and sNN
+NNN+4Nd with z=12 andd=2.

A similar situation occurs forTC in the Ising model where
even with the same number of interacting spins in the neigh-
borhood and the same dimensionality we have differentTC
f24g. On the other hand, the Bragg-Williams approximation
f25g predicts TC to be a unique function of coordination
number z, i.e., kBTC=zJ f26g. The GM universal formula
which also extends toTC includes a dependence on bothd
andz f27g.

To conclude, we have reported numerical estimates for
site percolation thresholds for the square lattice with NNN,
4N, 5N, 6N, sNN+4Nd, sNN+5Nd, and sNN+NNN+4Nd
neighborhoods. Our estimates may prove useful in the search
for a robust universal formula for percolation thresholds
which would apply to complex lattices. In particular on how
to extend the GM law by including some additional topologi-
cal ingredient besides coordinationz and dimensiond.

These results may prove useful to some of the large spec-
trum of physical and interdisciplinary topics where the per-
colation theory may be applied such as forest fires spreading
f20,28g, immunologyf29g, liquid migration in porous media
f30g, econophysicsf31g, and sociophysicsf32g.
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FIG. 2. The lattices withsad NNN and sbd 4N neighborhoods
may be mapped tosad two or sbd four parallel NN situations but
with sad Î2 andsbd two times larger lattice constants.
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